产品别名 |
EPCOS螺栓式铝电解电容,TDK超命铝电解电容,TDK螺栓式耐高温电容,TDK滤波电容命 |
面向地区 |
全国 |
电容器本身拥有储能的特性,因此充放电性能也是值得关注的一条关键信息。特别是在充放电过程中的短路问题,非常影响使用中的稳定性。尼吉康方面则通过特殊的结构解决了快速充放电的短路问题。
另一方面,超级电容器是新型储能装置的一种。超级电容器的区别实际上在于电解电容器的电极材料上,成为介于电容和电池之间的一种产品,的容量完全可以充当电池使用。
电气双层电容(EDLC)便是超级电容中的一种,在充放电过程中完全没有涉及物质变化,充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点,但EDLC的能量密度低至7Wh/kg,在体积上不具有优势。
尼吉康则在此前推出了“SLB系列”小型锂离子可充电电池,这是一种通过采用钛酸锂(LTO)作为负极实现的小型锂离子充电电池,也是超级电容的一种。拥有高倍率快速充/放电性能、接近电容器的高输入/输出密度、10C下超过25000回充放电循环的命、-30℃下工作的低温特性等优势。通过采用株式会社东芝的SCiB™技术开发出同时拥有高功率密度和能量密度的小型锂离子可充电电池。
氧化铝层可以承受正向的直流电压,如果其承受反向的直流电压,其很容易在数秒内失效。这个现象被称为‘Valve Effect ’,这就是为什么铝电解电容拥有极性的原因,如果电解电容的两个电极都有氧化层,则形成无极性电容。
许多文章报道了铝电解电容反向电压的阈值现象的机理,叫做氢离子理论( Hydrogen ion theory ),当电解电容承受反向直流电压的时候,即电解液的阴极承受正向电压而氧化层承受负电压,集合在氧化层的氢离子就将穿过介质达到介质和金属层的边界,转化成氢气,氢气的膨胀力使得氧化层脱落。
因此电流在击穿电解液后直接流通电容,电容失效,这个直流电压非常小,在 1~2V 的反向直流电压作用下,铝电解电容在几秒钟就会因为氢离子效应而立即失效。相反,当电解电容承受正向电压时候,负离子集结在氧化层之间,因为负离子的直径非常大,其并不能击穿氧化层,所以能承受较高电压。
极性电容反接为什么会短路?
极性电容内部结构分为正极、介质层、负极,介质层具有单向导电的性质,当然接反后产品介质层就起不到绝缘的作用了,电容自然就短路了。
有极性电容器反接会爆炸,是不是说不能直接接在交流电源上?
不能接到交流电源上,因为这个有极性电容设计就是用在直流电源上,作滤波用,因为这个有极性电容内部有特殊的物质,这个物质不能承受反压,如果通到交流电上就会反向击穿或爆炸。
静电容量计算式如下:
图片
其中,为介电常数,S为两极板正对表面积,d为两极板件距离(电介质厚度)。
从式中可以看出:静电容量与介电常数,极板表面积成正比、与两极板间距离成反比。作为铝电解电容器的电介质氧化膜(Al2O3)的介电常数通常为8~10,这个值一般不比其他类型的电容器大,但是,通过对铝箔进行蚀刻扩大表面积,并使用电化学的处理得到更薄更耐电压的氧化电介质层,使铝电解电容器可以取得比其他电容器更大的单位面积CV值。
铝电解电容器主要构成如下:
阳极-----铝箔
电介质---阳极铝箔表面形成的氧化膜(Al2O3)
阴极-----真正的阴极是电解液
其他的组成成分包括浸有电解液的电解纸,和电解液相连的阴极箔。综上所述,铝电解电容器是有极性的非对称构造的元件。两个电极都使用阳极铝箔的是两极性(无极性)电容。
再起电压
给铝电解电容器充电、让其端子间短路,再将短路线路打开放置一段时间过后,两端子间的电压会发生再次上升的现象。此时的电压叫再起电压。
给电介质施加电压后,电介质内部发生电气变化,电介质表面带有施加的电压和正负反向电荷。(极化作用)因为极化作用的速度,有快慢之分,施加电压后、把端子间的电压放至 0V、打开线路后放置,分极反应慢的电位在端子间产生再起电压。